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Using the two-velocity, two-temperature model of a continuous medium, the viscous- 
gravitational flow of a mixture of incompressible liquid and solid particles in a 
vertical round tube is considered. The free-convection equations are written down 
on the basis of the general equation of motion and the energy equation of a two- 
phase medium [I, 2]. Using a finite Hankel integral transformation, a solution is 
constructed for the case of a linear wall-temperature distribution along the tube. 
The results of some practical calculations of the velocity and temperature fields 
over the cross section of the tube are presented, together with the dimensionless 
heat-transfer coefficient expressed as a function of the Rayleigh number and phase 
concentration. Here it is assumed that the dynamic and thermal-interaction coef- 
ficients between the phases correspond to the Stokes mode of flow for each parti- 
cle, as a result of which the velocity and thermal phase lag is very small [3]. 

i. We shall consider the questions of flow and heat transfer in a vertical round tube 
of radius R at a reasonable distance from the entrance, i.e., in a region in which thermal 
and hydrodynamic stabilization of the flow have been achieved. In this region flow takes 
place parallel to the wall and the velocity remains constant along the length of the tube. 
The physical properties and concentrations of the phases (but not the densities) are re- 
garded as constant. The change in the true densities as a function of temperature is (by 
analogy with single-phase flow [4, 5]) assumed linear, and is only taken into account in those 
terms of the equations of motion which express the lifting forces. The insignificant change 
in the velocities for the case of free convection and the negligible velocity lag between 
the phases allows us to exclude terms due to energy dissipation and the viscous interaction 
of the phases from consideration in the energy equations. 

Subject to these assumptions the original system of equations [i, 2] is greatly sim- 
plified. 

The z axis of the cylindrical coordinate system P, 9, z is directed upward along the 
tube axis. Allowing for the symmetry of the flow and heat transfer, the equation for the 
gravitational convection of the two-phase medium (subject to the foregoing assumption) then 
becomes 
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(1.1) 

Here W i is the velocity, T i is the te4nperature, Pi is the pressure, ~ is the concentration, 
Pi is the true density for a wall temperature of Tw; ~i, ~i, Cpi, Xi are the dynamic viscosi- 
ty, volume expansion, specific heat at constant pressure, and thermal conductivity of phase, 
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i, ko and ~o are the coefficients of dynamic and thermal interaction between the phases, g 
is the gravitational acceleration, and i=l, 2, respectively, denote the first and second 
phases. 

In the region corresponding to thermal stabilization of the flow, the temperatures 
reckoned relative to the wall temperature remain constant along the length of the tube: 

T , -  T.~=0~(p) ( i = t , 2 ) ,  (1.2) 

while the longitudinal temperature gradients at every point of the flow, including the wall, 
also remain constant: 
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For convenience of subsequent calculations we write the system (i.I) in dimensionless 
form, taking account of (1.2) and (1.3): 
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in which we have introduced the following notation: 
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The problem thus reduces to the solution of a system of equations (1.4) subject to the 
boundary conditions 
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(1.5) 

After using a finite Rankel integral transformation, the solution of the boundary prob- 
lem (1.4), (1.5) is obtained in the form 
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where the constants Ain, Bin (i = i, 2), c, Dn are given by the expressions 

qh6z~H~ 
.A,,r~ = (,~,,H, ~, + ~ ) k  ~ ~ , 

(1.6) 

( .Yo and , ~  are Bessel functions of the first kind and the zero and first orders; H n are 
roots of the equation J0(H)=0) . 

If the physical properties of the phases are identical, i.e., 6i=I (i=i, 2, 3, 4), PI=P==P 
or the concentration of the second phase is equal to zero, Eq. (1.6) yields the solution to 
the problem of interaction between free and forced convection in a single-phase medium 
[4 ,  5] : 

U~ = U., = -- 2 P  ~_. l J"(f~ ''~') 
n = l  ~- I~ 

oo rz~ O"o(Zf,,,-) 
O1 0., 2P 

2. Using Eqs. (1.6) we executed calculations for the following constants: 51=II.9; 
9 8~=I.3; 5~=0.4; 84=0.i?; Pr'P~=-. The coefficients ko and so were taken in the form [I, 6] 

ko=-5-i5-,  q ' 2 ,  a o = o V % ,  
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We see from Figs. 

where 1 is the radius of the particles forming the second phase. 

The dimensionless complexes k and a are thus calculated from 
the formulas 

Figures i and 2 show the velocity and temperature profiles 
of the first phase for R/12 = I0 =, respectively referred to the 
velocity W*~ averaged over the cross section and the temperature 
~D on the tube axis. The continuous lines correspond to Ra = 
625 and the broken lines to Ra = 104 . Curves 1-3 correspond to 
~ = 0 ;  0.2: 0.4. 

1 and 2 t h a t  f o r  l a r g e  p o s i t i v e  Ra numbers  t h e  p r i n c i p a l  c h a n g e  i n  
temperature and hence the main rise in velocity takes place in the region close to the wall. 
With increasing impurity concentration the rise in flow velocity and temperature takes place 
more slowly than in a single-phase medium for the same Ra number. 

It follows from calculations carried out for various values of Ra that the velocity in 
the core of the flow falls with increasing Ra, the more rapidly the smaller the concentration 
of the second phase. Whereas, for a single-phase medium, concavity of the velocity profile 
close to the axis begins at Ra = 64.14 [5], for a flow containing foreign particles concavi- 
ty begins at a higher value Ra > 64.14; further development leads to a change in the direction 
of flow in the core. For negative Ra values (corresponding to heating from the bottom) the 
flow velocity increases in the middle of the tube and falls close to the wall with Ra. This 
leads to the development of reverse flow at the wall. With increasing concentration of the 
second phase and the same value of Ra < 0 the velocity in the core of the flow diminishes, 
whereas it increases close to the wall. For Ra values close to zero, quite independently of 
the concentration of the second phase, the velocity and temperature distributions over the 
cross section of the tube differ little from the corresponding single-phase flow distribu- 
tions. 

Figure 3 shows the Nusselt number Nu~ as a function of Ra and concentration ~ , cal- 
culated for R/1 = 102 . Curves 1-3 correspond to ~=0; 0.2; 0.4 In this calculatio~ we used 

i 

the average mass temperature of the first phase 0~ == 2 I'O~U~/U~ rdr, i.e., the Nul number was 
6 

calculated from the equation 

NUl ~--- Oi dr r=l 

oo 1 

We see from Fig. 3 that for --~<Ra<0 the Nu~ number rises with increasing concen- 

tration, while for Ra>O the reverse is the case. With increasing Ra the Nu~ number increases, 
independently of the concentration; as Ra->0 it approaches a constant value of 4.36, which is 
characteristic of the purely forced convection of a single-phase medium. 

In the case of homogeneous flow reverse flow starts at the walls at a value of Ra = 
--104.9, while for Ra~--168 stability is infringed and the character of the heat transfer alters; 
for Ra < --250 the flow becomes turbulent [5]. Calculations show that for a flow containing 
foreign particles reverse flow starts at the wall when R < --104.9 (for example, for 9z-0.2 
and Ra = --187 reverse flow at the wall is still absent), while the change in the Nusselt 
number remains as before, even for Ra < --250. We may deduce from this that the transition 
from laminar two-phase to turbulent flow sets in at Ra numbers smaller than those corre- 
sponding to a homogeneous flow. 

In Figs. 1-3 curves I coincide with the corresponding curves for a single-phase flow 

given in [5]. 
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Calculations carried out for R/l- I04; I0 ~ show that, for the same concentration of the 
second phase, the dimensions of the particles do not make any major contribution to the 
velocity and temperature distributions. In all cases the difference between these quantities 
for the first and second phase is negligible, i.e., the assumption of Stokes flow around 
the particles is satisfied. Thus the foregoing solutions are valid for flows containing 
foreign particles in tubes with a ratio of R/l>i02. 
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